Polynomial identities for partitions

نویسندگان

چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Polynomial identities for partitions

For any partition λ of an integer n , we write λ =< 11, 22, . . . , nn > where mi(λ) is the number of parts equal to i . We denote by r(λ) the number of parts of λ (i.e. r(λ) = ∑n i=1mi(λ) ). Recall that the notation λ ` n means that λ is a partition of n . For 1 ≤ k ≤ N , let ek be the k-th elementary symmetric function in the variables x1, . . . , xN , let hk be the sum of all monomials of to...

متن کامل

Polynomial Identities for Hypermatrices

We develop an algorithm to construct algebraic invariants for hypermatrices. We then construct hyperdeterminants and exhibit a generalization of the Cayley–Hamilton theorem for hypermatrices.

متن کامل

Rogers - Ramanujan Identities for n - Color Partitions

Recently, many q-identities from Slater’s compendium [S] have been interpreted combinatorially by several authors (e.g., see Connor [lo], Subbarao [9], Agarwal [l], and Agarwal and Andrews [2]). In his very recent paper [6], Andrews gave combinatorial interpretations of the Gessel-Stanton q-identities in terms of two-color paritions and expressed the hope that other q-identities such as those i...

متن کامل

Identities for Schur Functions and Plane Partitions

By a plane partition, we mean a finite set, P , of lattice points with positive integer coefficients, {(i, j, k)} ⊆ N, with the property that if (r, s, t) ∈ P and 1 ≤ i ≤ r, 1 ≤ j ≤ s, 1 ≤ k ≤ t, then (i, j, k) must also be in P . A plane partition is symmetric if (i, j, k) ∈ P if and only if (j, i, k) ∈ P . The height of stack (i, j) is the largest value of k for which there exists a point (i,...

متن کامل

Jack Polynomials and Some Identities for Partitions

We prove an identity about partitions involving new combinatorial coefficients. The proof given is using a generating function. As an application we obtain the explicit expression of two shifted symmetric functions, related with Jack polynomials. These quantities are the moments of the “α-content” random variable with respect to some transition probability distributions.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: European Journal of Combinatorics

سال: 1992

ISSN: 0195-6698

DOI: 10.1016/0195-6698(92)90044-z